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Abstract. Charge-changing transitions are considered in an extended Lipkin-Meshkov-Glick (LMG) model
taking into account explicitly the proton and neutron degrees of freedom. The proton and neutron Hamilto-
nians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included.
Model charge-changing operators and their action on eigenfunctions of the model Hamiltonian are defined.
Transition amplitudes of these operators are calculated using exact eigenfunctions and then the RPA ap-
proximation. The best agreement between the two kinds of calculation is obtained when the correlated
RPA ground state, instead of the uncorrelated HF ground state, is employed and when the proton-neutron
residual interaction, besides the proton-proton and neutron-neutron residual interactions, is taken into
account in the model Hamiltonian.

PACS. 21.60.Fw Models based on group theory – 21.60.Jz Hartree-Fock and random-phase approximations
– 13.75.Cs Nucleon-nucleon interactions

1 Introduction

The LMG [1] model was often used to test the valid-
ity of various microscopic approximation methods aim-
ing to treat many-nucleon systems. The Hamiltonian of
this model refers to nucleons of the same kind and con-
tains a simple but still non-trivial two-body interaction
between nucleons such that the model is solvable exactly
within the quasi-spin SU(2) algebra. In certain processes
like, for instance, beta and double-beta decay, the proton-
neutron (p-n) correlations in nuclei play, besides the like-
nucleon (i.e. proton-proton (p-p) and neutron-neutron
(n-n)) correlations, an important role as well. In the past
many papers devoted to calculations concerning such pro-
cesses have used RPA-type approaches in which all kinds
of residual interactions between nucleons have been taken
into account [2]–[9]. However, the competition between
like- and unlike-nucleon residual interactions is not still
well understood. Thus, it appears useful to have exactly
solvable models distinguishing betwen protons and neu-
trons suitable to test RPA-type methods used in realistic
calculations dealing with p-p, n-n and p-n correlations all
together.

Recently, the LMG model was extended to take into
account explicitly the protons and neutrons degrees of
freedom [10]. The proton and neutron Hamiltonians were
taken to be of the LMG form and, in addition, a residual
p-n interaction was included. The exact and RPA spec-
trum were studied and the main conclusion was that the
RPA method gives results closer to the exact ones when

the p-n interaction besides the p-p and n-n interactions
are all present in the model Hamiltonian.

The purpose of this paper is to show how charge-
changing transitions simulating a nuclear β± can be stud-
ied in the framework of that extended p-n LMG model
[10]. We defined transition operators that convert a neu-
tron into a proton and viceversa, calculated their transi-
tion amplitudes by using firstly exact wave functions and
then the RPA ones, and compared the emerging results.

2 The model Hamiltonian

In this section we give a brief description of our model,
more details being given in [10]. The model consists in an
N -nucleon system composed of two subsystems: one con-
taining Np protons, the other Nn neutrons. Inside each
subsystem the nucleons of the same kind are distributed
into two levels, each having an Np(Nn)-fold degeneracy,
and separated by an energy εp(εn), respectively. Further-
more, the states in each subsystem are characterized by
two quantum numbers: σ distinguishing between the lower
(σ = −1) and upper (σ = 1) level and p (n) denoting
all the other quantum numbers characterizing the proton
(neutron) states of the level. For each p (n) there are two
possible states, one in the lower level and the other in the
upper level. The model Hamiltonian of the system can be
expressed in terms of the quasi-spin operators for protons
and neutrons:
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which satisfy the angular-momentum commutation rela-
tions. In the expressions of the J± operators the symbols
+ and − denote the two possible values (+1,−1) of σ.

The terms proportional to Vp (Vn) parameters scatter
a pair of protons (neutrons) in the same level to the other
level. In addition to these residual like-particle interac-
tions which appear in the LMG model, we also consider
terms proportional to Vpn which account for a p-n residual
interaction. The interpretation of these terms is similar to
the corresponding Vp and Vn terms described above but
now the scattered pair is composed of one proton and one
neutron, which can be excited within the corresponding
subsystems.

The Hamiltonian matrix can be diagonalized exactly
in the SU(2)⊗ SU(2) basis

Φ = |JpMp〉 ⊗ |JnMn〉 , (2.3)

where Jp, Jn and Mp, Mn are the total angular momenta
and their projections onto the z-axis for the p and n sub-
systems, respectively. Since each nucleon has an 1/2 angu-
lar momentum, in the no-interaction limit and assuming
that in the ground state (g.s.) all possible p and n states
of the lower level are occupied by one nucleon, the unper-
turbed (HF) g.s. reads:
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The first excited state of the system has one excited par-
ticle and is N = (Np +Nn)-fold degenerate. These states
all have Jz = −1
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where the norm factor in (2.5) was chosen such that
|1st〉 be normalized. The energy spectrum of (1) can be
obtained exactly by diagonalizing the Hamiltonian ma-
trix corresponding to the multiplet with (Jp = 1

2Np,
Jn = 1

2Nn) which contains the g.s. and all the states of
interest. After diagonalization the exact wave functions of

the system will be linear combinations of wave functions
of the basis (2.3).

Now we treat our model Hamiltonian (1) within the
RPA method. The RPA phonon operator can be defined
as follows:

Γ † =
XΘ+ − Y Θ−√
〈HF|[Θ−, Θ+]|HF〉

,

Θ+ = Jp
+ + Jn

+ ; Θ− = Jp
− + Jn

− (2.6)

X and Y are the RPA amplitudes. The norm appearing
in the expression of Γ+ is taken such that the first excited
states be normalized to unity and has the value

√
N . The

correlated RPA g.s. for our system, obtained by solving
the equation Γ |RPA〉 = 0 [11], and the first (normalized)
excited state reads:

|RPA〉 = N0exp
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|1st〉 = Γ †|RPA〉 (2.8)

where
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(
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is the normalization factor.

3 Charge-changing transitions

In the framework of our model we consider now transitions
in which a neutron transforms into a proton (or viceversa),
such that the total number of nucleons remains constant.
Such transitions can be associated to nuclear beta decay.

Let us define the following transition operators:

M̂+ = χ+
∑

p,n,σ,σ′

a†pσanσ′ ;

(3.1)
M̂− = χ−

∑
p,n,σ,σ′

a†nσ′apσ = (M̂+)+

The M̂+ operator can destroy one neutron from any of
the states of the two levels of the neutron subsystem and
create one proton into any of the states of the two levels
of the proton subsystem. Such an operator can connect
states belonging to systems with the same total number of
nucleons, N , but differing from each other in the number
of protons and neutrons in their respective subsystems.
For example, it can connect states of the system |Np〉|Nn〉
with states belonging to the system |Np +1〉|Nn−1〉. This
transition simulates a nuclear β− decay. The factor χ+ in
front can be interpreted as the strength of the transition.
We imagine that the creation of the proton can occur only
in a p state which is unoccupied (free), both in the lower
and in the upper level of the p subsystem. Hence, we sup-
pose that such free states exist in the lower level (with
an accompanying free upper level) even in the g. s. of the
system. The existence of free states in the subsystems of
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the N -nucleon system does not affect the consistency of
the model. Moreover, their presence does not influence ei-
ther the possible values of the total angular momentum
(which only depend of the number of particles) or the
Hamiltonian eigenvalues. The only quantity which is af-
fected is the degeneracy of the g. s. and excited states of
the system which now increases, but this effect can easily
be accounted for. Allowing this degree of freedom it will
produce also a change in the values of the normalization
factors of (2.4) and (2.5), which have to be re-calculated in
order to keep the corresponding states normalized to unity.
As an intuitive physical correspondence, one can imagine
to associate the p (or n) subsystem with a p (or n) closed
or open nuclear shell. The M̂− operates in a similar man-
ner as M̂+, but now one proton is transformed into one
neutron and the transition simulates a nuclear β+ decay.

We proceed further to the calculation of the g.s. to
g.s. and g.s. to |1st〉 transition amplitudes. Consider an
N -nucleon system having Np protons and Nn neutrons in
its two subsystems. Assume the particular case when in
the proton subsystem we have Np+1 possible states, while
in the neutron subsystem the number of possible n states
is equal to the number of neutrons, Nn. Generalization
to the case of more than one free (hole) states in any
of the subsystems can be easily made, but for simplicity
we restrict ourselves to this case. The operator M̂+ can
connect states of this system only with states of a system
with the same N but with Np + 1, Nn − 1. The simplest
of these systems is the one which has in the g. s. all the
possible p states occupied (in the p subsystem), while, in
the n subsystem there is one (free) hole. In this particular
case it is easy to see that the normalization factors for the
g.s. are:
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The symbol (1h) appearing in the above formulae denotes
the hole associated to the free state in the corresponding
subsystem. The first excited states of these systems will
have the normalization factors of (3.2) and (3.3) multiply-
ing the factor

√
N of (2.5).

The M̂− operator can connect states of the N -nucleon
system having Np protons and Nn neutrons with the N -
nucleon system having Np−1 protons and Nn+1 neutrons.
Assuming again the existence of only one hole in the corre-
sponding subsystems, we get similar normalization factors
as in the case of M̂+, but with p changed to n.

Next, we calculate charge-changing transitions be-
tween the ground states and between the g. s. and the
first excited state. First we performed the diagonalization
of the Hamiltonian and got the exact wave functions as
linear combination of the unperturbed states in the full

SU(2) basis (2.3). Then, in the calculation of the transi-
tion amplitudes we used the following approximation: we
considered our exact g.s and first excited wave functions
be linear combinations of only unperturbed states having
at most 2p-2h excitations. In the RPA framework this cor-
responds to the use of the correlated |RPA〉 g.s. as the g.s
of the system. It is worth mentioning that this approx-
imation is well justified by the very small values of the
mixing coefficients of the exact g.s. and first excited state
with unperturbed states having more than 2p-2h excita-
tions. From a numerical estimation we found that the ex-
act calculation of the transition amplitudes obtained with
this approximation differs within 2% from the exact result
when all possible excitations are included. The reason of
using this approximation was to save much labour. De-
noting the g.s. as Ψ0 and the first excited state as Ψ1 one
obtains the following results

a) Exact results
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b) RPA results
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where |RPA〉 and |RPA′〉 represent the correlated RPA
g.s. functions. Above the states denoted by prime refer to
the final system having (Np + 1;Nn − 1), while the states
without any additional index refer to the initial system
having (Np;Nn) nucleons. The coefficients cij are related
to the decomposition of the g.s. and first excited state
wave functions in terms of the unperturbed wave functions
of the basis (2.3). One notes that in the formulae (3.4-
3.7) enter only those coefficients which are connected to
the unperturbed wave functions containing at most 2p-2h
excitations.

In Figs. 1, 2 we display the transitions between the
ground states and between the g. s. and the first excited
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Fig. 1. Square of the charge-changing transition amplitudes between ground states as a function of the interaction parameter
NVpn
ε

at NV
ε

= 0.8 for (a) transitions from (Np = 4;Nn = 4) to (Np = 5;Nn = 3), (b) transitions from (Np = 20;Nn = 20) to
(Np = 21;Nn = 19)

Fig. 2. Square of the charge-changing transition amplitude between the ground state and the first excited state as a function
of the interaction parameter

NVpn
ε

at NV
ε

= 0.8 for (a) transitions from (Np = 4;Nn = 4) to (Np = 5;Nn = 3), (b) transitions
from (Np = 20;Nn = 20) to (Np = 21;Nn = 19)

state as function of the model parameter NVpn/ε and for
a fixed value of the NV/ε, in the case of the systems with
N = 8 and N = 40, as it is indicated on each figure.
Figures 1a, b display the g.s to g.s. β−-type transitions.
Firstly, one remarks the good agreement between the ex-
act and RPA results. The agreement seems to improve
in the case of a system with a larger number of nucleons
(N=40), in accordance with the fact that the RPA works
better for systems with a large number of nucleons, where
collective effects manifest stronger. Furthermore, one ob-
serves that at a certain value of the model parameters

NVpn/ε and NV/ε, different from zero, the exact and the
RPA calculation for these transitions give the same re-
sults. This shows the presence of both kinds (i.e. like and
unlike- particle) of residual interactions further improves
the RPA results. The same conclusions also emerge by
analysing the Figs. 2a, b where we plotted transitions from
the g.s. to the first excited state. In this case, the agree-
ment between exact and RPA results is clearer better in
the case N = 40. Moreover, for these transitions there is a
whole region of values of the model parameters (different
from zero) where the exact and RPA results are very close
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to each other. Thus, in this case, the presence of both kinds
of residual interactions is also important in getting exact
and RPA results very close to each-other.

It is worth mentioning that the features presented
above are generally the same for other values of the model
parameters (i.e. the total number of nucleons and the
NV/ε parameter). Also, here we limited our discussion
to the transitions induced by the M+ simulating a β− nu-
clear transition. Transitions induced by the M− operator,
simulating a nuclear β+ transition as well as transitions
between other initial and final states can also be calculated
in a similar manner.

4 Conclusions

Concluding, charge-changing transitions were studied in
the framework of an extended LMG model taking into
account explicitly the proton and neutron degrees of free-
dom. Model charge-changing transition operators simulat-
ing nuclear β decay and their action on eigenfunctions of
the model Hamiltonian were defined. The spectrum of the
model Hamiltonian was obtained by diagonalization in the
full SU(2) ⊗ SU(2) basis (2.3). However, the transition
amplitudes of these operators were calculated by limit-
ing our exact basis to be a superposition of unperturbed
states having at most 2p-2h excitations and, accordingly,
we considered the correlated RPA g.s.. We found the RPA
results for charge-changing transition amplitudes get close
to the exact ones in the case of a system with more nu-
cleons when the collective effects manifest stronger. More-
over, the presence of the p-n residual interaction besides
the p-p and n-n residual interactions in the model Hamil-
tonian further improves the agreement between the exact
and RPA calculation. All these features emerging from the

study of charge-changing transitions in the framework of
an exactly solvable model encourage the employment, in
realistic situations, of RPA-type approaches, where like-
and unlike-nucleon residual interactions are taken into ac-
count on the same footing.
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